Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
نویسندگان
چکیده
A ball lens coupled fiber-optic probe design is described for depth-resolved measurements of the fluorescence and reflectance properties of epithelial tissue. A reflectance target, fluorescence targets, and a two-layer tissue phantom consisting of fluorescent microspheres suspended in collagen are used to characterize the performance of the probe. Localization of the signal to within 300 microm of the probe tip is observed by use of reflectance and fluorescence targets in air. Differential enhancement of the fluorescence signal from the top layer of the two-layer tissue phantom is observed.
منابع مشابه
Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue
In this study, we present a fiber-optic ball lens Raman probe design for improving depth-selected Raman measurements of epithelial tissue. The Monte Carlo simulation results show that tissue Raman collection efficiency can be improved by properly selecting the refractive index and the diameter of the ball lens for the Raman probe design and the depth-selectivity of Raman measurements can also b...
متن کاملReflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
Reflectance spectroscopy is a promising technology for detection of epithelial precancer. Fiber-optic probes that selectively collect scattered light from both the epithelium and the underlying stroma are likely to improve diagnostic performance of in vivo reflectance spectroscopy by revealing diagnostic features unique to each layer. We present Monte Carlo models with which to evaluate fiber-o...
متن کاملAutofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
Optical spectroscopy can provide useful diagnostic information about the morphological and biochemical changes related to the progression of precancer in epithelial tissue. As precancerous lesions develop, the optical properties of both the superficial epithelium and underlying stroma are altered; measuring spectral data as a function of depth has the potential to improve diagnostic performance...
متن کاملA fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with depth-selective optical properties in tissue ex-vivo...
متن کاملDesign and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.
We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is ena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2005